Abstract

The contribution of turbulence to the electrification of thunderstorm clouds is considered for the first time using a model of the large-scale electric field generation in a weakly conducting media containing two fractions of colliding hydrometeors. The calculation results are compared with experimental data. It has been found that scenarios of electric-field generation and growth are significantly different for inductive and noninductive charging mechanisms. The range of thundercloud parameters (of conductivity and particle radii) for which the electric field grows exponentially in the case of inductive charging has been found. In the case of noninductive charging, it has been shown that the electric field strength grows linearly in time due to intensive fluctuations of the electric charge. The linear growth of the electric field can be a significant factor when approaching the threshold of the discharge initiation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.