Abstract
The influence of the partial-wave states with nonzero orbital moment of the nucleon pair on the binding energy of the triton in the relativistic case is considered. The relativistic generalization of the Faddeev equation in the Bethe-Salpeter formalism is applied. Two-nucleon t matrix is obtained from the Bethe-Salpeter equation with separable kernel of nucleon-nucleon interaction of the rank one. The kernel form factors are the relativistic type of the Yamaguchi functions. The following two-nucleon partial-wave states are considered: $^1S_0$, $^3S_1$, $^3D_1$, $^3P_0$, $^1P_1$, $^3P_1$. The system of the integral equations are solved by using the iteration method. The binding energy of the triton and three-nucleon amplitudes are found. The contribution of the P and D states to the binding energy of triton is given.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.