Abstract
We show that in elementary analysis (EL) the contrapositive of countable choice is equivalent to double negation elimination for $${\Sigma_{2}^{0}}$$ -formulas. By also proving a recursive adaptation of this equivalence in Heyting arithmetic (HA), we give an instance of the conservativity of EL over HA with respect to recursive functions and predicates. As a complement, we prove in HA enriched with the (extended) Church thesis that every decidable predicate is recursive.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.