Abstract
Tangent and normal cones play an important role in constrained optimization to describe admissible search directions and, in particular, to formulate optimality conditions. They notably appear in various recent algorithms for both smooth and nonsmooth low-rank optimization where the feasible set is the set $\mathbb {R}_{\le r}^{m \times n}$ of all m × n real matrices of rank at most r. In this paper, motivated by the convergence analysis of such algorithms, we study, by computing inner and outer limits, the continuity of the correspondence that maps each $X \in \mathbb {R}_{\le r}^{m \times n}$ to the tangent cone to $\mathbb {R}_{\le r}^{m \times n}$ at X. We also deduce results about the continuity of the corresponding normal cone correspondence. Finally, we show that our results include as a particular case the a-regularity of the Whitney stratification of $\mathbb {R}_{\le r}^{m \times n}$ following from the fact that this set is a real algebraic variety, called the real determinantal variety.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.