Abstract

Historically and to date, the continuity equation (C.E.) has served as a consistency criterion for the development of physical theories. In this paper, we study the C.E. employing the mathematical framework of space–time algebra (STA), showing how common equations in mathematical physics can be identified and derived from the C.E.’s structure. We show that, in STA, the nabla equation given by the geometric product between the vector derivative operator and a generalized multivector can be identified as a system of scalar and vectorial C.E.—and, thus, another form of the C.E. itself. Associated with this continuity system, decoupling conditions are determined, and a system of wave equations and the generalized analogous quantities to the energy–momentum vectors and the Lorentz force density (and their corresponding C.E.) are constructed. From the symmetry transformations that make the C.E. system’s structure invariant, a system with the structure of Maxwell’s field equations is derived. This indicates that a Maxwellian system can be derived not only from the nabla equation and the generalized continuity system as special cases, but also from the symmetries of the C.E. structure. Upon reduction to well-known simpler quantities, the results found are consistent with the usual STA treatment of electrodynamics and hydrodynamics. The diffusion equation is explored from the continuity system, where it is found that, for decoupled systems with constant or explicitly dependent diffusion coefficients, the absence of external vector sources implies a loss in the diffusion equation structure, transforming it into Helmholtz-like and wave equations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.