Abstract

In this investigation, contact search algorithms for the analysis of wheel/rail contact problems are discussed, and the on-line and off-line hybrid contact search method is developed for multibody railroad vehicle dynamics simulations using the elastic contact formulation. In the hybrid algorithm developed in this investigation, the off-line search that can be effectively used for the tread contact is switched to the on-line search when the contact point is jumped to the flange region. In the two-point contact scenarios encountered in curve negotiations, the on-line search is used for both tread and flange contacts to determine the two-point contact configuration. By so doing, contact points on the flange region given by the off-line tabular search are never used, but rather used as an initial estimate for the online iterative procedure for improving the numerical convergence. Furthermore, the continual on-line detection of the second point of contact is replaced with a simple table look-up. It is demonstrated by several numerical examples that include flange climb and curve negotiation scenarios that the proposed hybrid contact search algorithm can be effectively used for modeling wheel/rail contacts in the analysis of general multibody railroad vehicle dynamics.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call