Abstract

This work aims at studying dynamical models of neural networks, which exhibit phase transitions between states of various complexities. We use the biologically motivated KIII model, which has demonstrated excellent performance as a robust dynamical memory device. KIII is a high-dimensional dynamical system with extremely fragmented boundaries between limit cycles, tori, fixed points, and chaotic attractors. We study the role of additive noise in the development of itinerant trajectories. Noise not only stabilizes aperiodic trajectories, but there is an optimum noise level with highly itinerant behavior. We speculate that the previously found optimum classification performance of KIII as a function of the noise level, also identified as chaotic resonance, is related to chaotic itinerant oscillations among various ordered states.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.