Abstract

We present three approaches to define the higher etale regulator maps Φr,net : Hret(X,Z(n)) → HrD(X,Z(n)) for regular arithmetic schemes. The first two approaches construct the maps on the cohomology level, while the third construction provides a morphism of complexes of sheaves on the etale site, along with a technical twist that one needs to replace the Deligne-Beilinson cohomology by the analytic Deligne cohomology inspired by the work of Kerr, Lewis, and Muller-Stach. A vanishing statement of infinite divisible torsions under Φr,net is established for r > 2n + 1.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.