Abstract

This paper presents a new approach to tolerating edge faults and node faults in (CCC) networks of Cube-Connected Cycles in a worst-case scenario. Our constructions of fault-tolerant CCC networks are obtained by adding extra edges to the CCC. The main objective is to reduce the cost of the fault-tolerant network by minimizing the degree of the network. Specifically, we have two main results. (i) We have created a fault tolerant CCC that can tolerate any single fault, either a node fault or an edge fault. When the dimension of the CCC is odd, the degree of the fault tolerant graph is 4. In the even case, there is a single node per cycle that is of degree 5 and the rest are of degree 4. (ii) We have created a fault-tolerant CCC, where every node has degree y + 2, which can tolerate any 2 y − 1 cube-edge faults. Our constructions are extremely efficient for the case of edge faults-they result in healthy CCC networks that utilize all of the processors.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call