Abstract
We provide a uniform framework for the study of index data structures for a two-dimensional matrixTEXT[1:n, 1:n] whose entries are drawn from an ordered alphabetΣ. An index forTEXTcan be informally seen as the two-dimensional analog of the suffix tree for a string. It allows on-line searches and statistics to be performed onTEXTby representing compactly theΘ(n3) square submatrices ofTEXTin optimalO(n2) space. We identify 4n−1families of indices forTEXT, each containing ∏ni=1 (2i−1)! isomorphic data structures. We also develop techniques leading to a single algorithm that efficiently builds any index in any family inO(n2 log n) time andO(n2) space. Such an algorithm improves in various respects the algorithms for the construction of the PAT tree and the Lsuffix tree. The framework and the algorithm easily generalize tod>2 dimensions. Moreover, as part of our algorithm, we provide new algorithmic tools that yield a space-efficient implementation of the “naming scheme” of R. Karpet al.(in“Proceedings, Fourth Symposium on Theory of Computing,” pp. 125–136) for strings and matrices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.