Abstract

In this paper, we first derive a characterization of the solution set of a continuously differentiable system of equations subject to a closed feasible set. Assuming that a constrained local error bound condition is satisfied, we prove that the solution set can locally be written as the intersection of a differentiable manifold with the feasible set. Based on the derivation of this result, we then show that the projected Levenberg–Marquardt method converges locally R-linearly to a possibly nonisolated solution under significantly weaker conditions than previously done.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.