Abstract

In finite population sampling, often a distinction is made between model-and design-based estimators of the parameters of interest (like the population total, population variance, etc.). The model-based estimators depend on the (known) parameters of the model, while the design-based estimators depend on the (known) selection probabilities of the different units in the population. It is shown in this paper that the two approaches are not necessarily incompatible, and indeed can often lead to the same estimator. Our ideas are illustrated with the Horvitz-Thompson, and the generalized Horvitz-Thompson estimator. These estimators are identified as hierarchical Bays estimators. Also, certain “stepwise-Bayes” estimators of Vardeman and Meeden (J. Stat. Inf. (1983), V7, pp 329-341) are unified from a hierarchical Bayes point of view.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.