Abstract

We introduce a class partial correlation network models whose network structure is determined by a random graph. In particular in this work we focus on a version of the model in which the random graph has a power-law degree distribution. A number of cross-sectional dependence properties of this class of models are derived. The main results we establish is that when the random graph is power-law, the system exhibits a high degree of collinearity. More precisely, the largest eigenvalues of the inverse covariance matrix converge to an affine function of the degrees of the most interconnected vertices in the network. The result implies that the largest eigenvalues of the inverse covariance matrix are approximately power-law distributed, and that, as the system dimension increases, the eigenvalues diverge. As an empirical illustration we analyse a panel of stock returns of a large set of companies listed in the S&P500 and show that the covariance matrix of returns exhibits empirical features that are consistent with our power-law model.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.