Abstract

The high-level contribution of this paper is a simulation based analysis of the network connectivity, hop count and lifetime of the routes determined for vehicular ad hoc networks (VANETs) using the City Section and Manhattan mobility models. The Random Waypoint mobility model is used as a benchmark in the simulation studies. Two kinds of paths are determined on the sequence of static graphs representing the topology over the duration of the network session: paths with the minimum hop count (using the Dijkstra algorithm) and stable paths with the longest lifetime (using our recently proposed OptPathTrans algorithm). Simulation results indicate that the City Section model provided higher network connectivity compared to the Manhattan model for all the network scenarios. Minimum hop paths and stable paths determined under the Manhattan model have a smaller lifetime and larger hop count compared to those determined using the City Section and Random Waypoint mobility models.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call