Abstract
We consider three triangular plate bending elements for the Reissner-Mindlin model. The elements are the MIN3 element of Tessler and Hughes [19], the stabilized MITC3 element of Brezzi, Fortin and Stenberg [5] and the T3BL element of Xu, Auricchio and Taylor [2, 17, 20]. We show that the bilinear forms of the stabilized MITC3 and MIN3 elements are equivalent and that their implementation may be simplified by using numerical integration of reduced order. The T3BL element is shown to be essentially the same as the MIN3 and stabilized MITC3 elements with reduced integration. We finally introduce a general stabilized finite element formulation which covers all three methods. For this class of methods we prove the stability and optimal convergence properties.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.