Abstract

To every finitely generated group, one can assign the conjugacy growth function that counts the number of conjugacy classes intersecting a ball of radius $n$. Results of Ivanov and Osin show that the conjugacy growth function may be constant even if the (ordinary) growth function is exponential. The aim of this paper is to provide conjectures, examples and statements that show that in “normal” cases, groups with exponential growth functions also have exponential conjugacy growth functions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.