Abstract
We show that all GGS-groups with a non-constant defining vector satisfy the congruence subgroup property. This provides, for every odd prime p p , many examples of finitely generated, residually finite, non-torsion groups whose profinite completion is a pro- p p group, and among them we find torsion-free groups. This answers a question of Barnea. On the other hand, we prove that the GGS-group with a constant defining vector has an infinite congruence kernel and is not a branch group.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.