Abstract

AbstractUltrafast high‐temperature sintering (UHS) and flash sintering are novel methods for rapid sintering of ceramics, often completed in just a few seconds. Here, we show that both also share two additional features: an abrupt rise in electrical conductivity, which is electronic, and electroluminescence. More fundamentally, both are related to phonon physics where MD calculations have shown that proliferation of phonons at the edge of the Brillouin zone can induce Frenkel pairs without the application of electrical fields. Here, we show that, indeed, heating without the application of electric field, can also induce flash: Rapid heating processes of thin films of an oxide‐salt deposited on silk fibers, with a propane torch, are shown to induce electronic conductivity, electroluminescence, and rapid sintering of the oxide. The discussion in this article harkens back to two inventions, more than a century ago, which can now be related to flash and UHS: (i) the Nernst glow lamp circa 1900, made from zirconia, and (ii) the Welsbach mantle, constituted from ceria doped thorium oxide, in the late nineteenth century. Thus, the confluence between high heating rate and electric field induced flash phenomena links the past to the new. The emerging question is how injection of phonons that has been shown to create Frenkels can further induce high electronic conductivity and electroluminescence in oxides. Both electronic conductivity and luminescence are likely related to the generation of electron–hole pairs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.