Abstract
In this article, the Laplace distribution is employed in lieu of the well-known normal distribution for finding better scalar values of risk. Explicit formulas for value-at-risk (VaR) and conditional value-at-risk (CVaR) are studied and used to manage the risk involved in a stock movement by using the GARCH model. Numerical simulations are given for a variety of stocks in equity markets to uphold the findings.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.