Abstract

It is shown that for every 1≤s≤n, the probability that thes-th largest eigenvalue of a random symmetricn-by-n matrix with independent random entries of absolute value at most 1 deviates from its median by more thant is at most 4e − t 232 s2. The main ingredient in the proof is Talagrand’s Inequality for concentration of measure in product spaces.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.