Abstract

Totalistic cellular automata, introduced by S. Wolfram, are cellular automata in which the state transition function depends only on the sum of the states in a cell's neighborhood. Each state is considered as a nonnegative integer and the sum includes the cell's own state. It is shown that one-dimensional totalistic cellular automata can simulate an arbitrary Turing machine in linear time, even when the neighborhood is restricted to one cell on each side. This result settles Wolfram's conjecture that totalistic cellular automata are computation-universal.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.