Abstract
Let X⊆G/B\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$X\\subseteq G/\\mathcal {B}$$\\end{document} be a Schubert variety in a flag manifold and let π:X~→X\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\pi : \ ilde{X} \\rightarrow X$$\\end{document} be a Bott–Samelson resolution of X. In this paper, we prove an effective version of the decomposition theorem for the derived pushforward Rπ∗QX~\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$R \\pi _{*} \\mathbb {Q}_{\ ilde{X}}$$\\end{document}. As a by-product, we obtain recursive procedure to extract Kazhdan–Lusztig polynomials from the polynomials introduced by Deodhar [7], which does not require prior knowledge of a minimal set. We also observe that any family of equivariant resolutions of Schubert varieties allows to define a new basis in the Hecke algebra and we show a way to compute the transition matrix, from the Kazhdan–Lusztig basis to the new one.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.