Abstract

This paper deals with the numerical implementation of a systematic method for solving bi-objective optimal control problems for wave equations. More precisely, we look for Nash and Pareto equilibria which respectively correspond to appropriate noncooperative and cooperative strategies in multi-objective optimal control. The numerical methods described here consist of a combination of the following: finite element techniques for space approximation; finite difference schemes for time discretization; gradient algorithms for the solution of the discrete control problems. The efficiency of the computational methods is illustrated by the results of some numerical experiments.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.