Abstract
This paper concerns numerical methods for the determination of bifurcation points of certain steady state multiparameter problems in the presence of symmetries. The approach is based on the fact that under general conditions the solution set forms a manifold in the space of all state and parameter variables. The reduced manifold with respect to some subsymmetry is introduced. Methods are presented for the local computation of the submanifold of bifurcation points of the same symmetry.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.