Abstract

Spatial information is important for human perception of speech and sound signals. However, this information is often either distorted or completely neglected in noise reduction because it is challenging, to say the least, to achieve optimal noise reduction and accurate spatial information preservation at the same time. This paper studies the problem of binaural speech enhancement. By jointly diagonalizing the speech and noise correlation matrices, we present a method to construct the noise reduction filter as a linear combination of different eigenvectors, which span a certain subspace of the entire space. A different dimension of the subspace gives a different trade-off between noise reduction and speech/noise spatial information preservation. On the one side, if the dimension is equal to 1, maximum noise reduction is achieved but at the price of significant spatial information distortion. On the other extreme, if the dimension of the subspace is equal to that of the entire space, spatial information is accurately preserved but at the cost of no noise reduction. Therefore, one can achieve different levels of compromises between the amount of noise reduction and the level of speech/noise spatial information preservation by adjusting the dimension of the used subspace.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.