Abstract

A distribution function is called strong unimodal if its composition with any unimodal distribution function is unimodal. The following theorem is proved: For a proper unimodal distribution $F(x)$ to be strong unimodal, it is necessary and sufficient that the function $F(x)$ be continuous, and the function log $F'(x)$ be concave at a set of points where neither the right nor the left derivative of the function $F(x)$ is equal to zero.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.