Abstract

Beamspace multiple-input multiple-output (B-MIMO) provides a promising solution for reducing the number of required expensive radio frequency (RF) chains without obvious performance loss. However, the high computational complexities of beam selection algorithms prohibits their practical applications in 5G millimeter wave (mmWave) massive MIMO communication systems. Reviewing existing beam selection procedures and using the matrix perturbation theory, the complexity reduction on beam selection for beamspace MIMO is considered in this letter. Two beam selection algorithms, one for B-MIMO systems with classic zero-forcing (ZF) precoder and the other for the systems with QR precoder are proposed. Theoretical analyses and numerical simulations all show that the proposed beam selection algorithms possess a much lower complexity than conventional ones.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.