Abstract

The complexity of the model checking problem for various fragments of first-order logic (FO) has attracted much attention over the last two decades, in particular for the fragment induced by $\exists$ and $\wedge$ and that induced by $\forall, \exists$, and $\wedge$, which are better known as the constraint satisfaction problem and the quantified constraint satisfaction problem, respectively. The former was conjectured to follow a dichotomy between P and NP-complete by Feder and Vardi [SIAM J. Comput., 28 (1998), pp. 57--104]. For the latter, there are several partial trichotomy results between P, NP-complete, and Pspace-complete, and Chen [Meditations on quantified constraint satisfaction, in Logic and Program Semantics, Springer, Heidelberg, 2012, pp. 35--49] ventured a conjecture regarding Pspace-completeness vs. membership in NP in the presence of constants. We give a comprehensive account of the whole field of the complexity of model checking similar syntactic fragments of FO. The above two fragments...

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.