Abstract
In this paper we consider the disjoint paths problem. Given a graphG and a subsetS of the edge-set ofG the problem is to decide whether there exists a family ℱ of disjoint circuits inG each containing exactly one edge ofS such that every edge inS belongs to a circuit inC. By a well-known theorem of P. Seymour the edge-disjoint paths problem is polynomially solvable for Eulerian planar graphsG. We show that (assumingP≠NP) one can drop neither planarity nor the Eulerian condition onG without losing polynomial time solvability. We prove theNP-completeness of the planar edge-disjoint paths problem by showing theNP-completeness of the vertex disjoint paths problem for planar graphs with maximum vertex-degree three. This disproves (assumingP≠NP) a conjecture of A. Schrijver concerning the existence of a polynomial time algorithm for the planar vertex-disjoint paths problem. Furthermore we present a counterexample to a conjecture of A. Frank. This conjecture would have implied a polynomial algorithm for the planar edge-disjoint paths problem. Moreover we derive a complete characterization of all minorclosed classes of graphs for which the disjoint paths problem is polynomially solvable. Finally we show theNP-completeness of the half-integral relaxation of the edge-disjoint paths problem. This implies an answer to the long-standing question whether the edge-disjoint paths problem is polynomially solvable for Eulerian graphs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.