Abstract
In this paper, we study the complexity of the chip-firing reachability problem. We show that for Eulerian digraphs, the reachability problem can be decided in strongly polynomial time, even if the digraph has multiple edges. We also show a special case when the reachability problem can be decided in polynomial time for general digraphs: if the target distribution is recurrent restricted to each strongly connected component. As a further positive result, we show that the chip-firing reachability problem is in co-NP for general digraphs. We also show that the chip-firing halting problem is in co-NP for Eulerian digraphs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.