Abstract

Many important problems in AI, among them SAT, #SAT, and probabilistic inference, amount to Sum-of-Products Problems, i.e. evaluating a sum of products of values from some semiring R. While efficiently solvable cases are known, a systematic study of the complexity of this problem is missing. We characterize the latter by NP(R), a novel generalization of NP over semiring R, and link it to well-known complexity classes. While NP(R) is unlikely to be contained in FPSPACE(poly) in general, for a wide range of commutative (resp. in addition idempotent) semirings, there are reductions to #P (resp. NP) and solutions are thus only mildly harder to compute. We finally discuss NP(R)-complete reasoning problems in well-known semiring formalisms, among them Semiring-based Constraint Satisfaction Problems, obtaining new insights into their computational properties.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.