Abstract

Sparse elimination exploits the structure of a multivariate polynomial by considering its Newton polytope instead of its total degree. We concentrate on polynomial systems that generate zero-dimensional ideals. A monomial basis for the coordinate ring is defined from a mixed subdivision of the Minkowski sum of the Newton polytopes. We offer a new simple proof relying on the construction of a sparse resultant matrix, which leads to the computation of a multiplication map and all common zeros. The size of the monomial basis equals the mixed volume and its computation is equivalent to computing the mixed volume, so the latter is a measure of intrinsic complexity. On the other hand, our algorithms have worst-case complexity proportional to the volume of the Minkowski sum. In order to derive bounds in terms of the sparsity parameters, we establish new bounds on the Minkowski sum volume as a function of mixed volume. To this end, we prove a lower bound on mixed volume in terms of Euclidean volume which is of independent interest.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call