Abstract
This paper studies the complexity of determining if a finite algebra generates a variety that satisfies various Maltsev conditions, such as congruence distributivity or modularity. For idempotent algebras we show that there are polynomial time algorithms to test for these conditions but that in general these problems are EXPTIME complete. In addition, we provide sharp bounds in terms of the size of two-generated free algebras on the number of terms needed to witness various Maltsev conditions, such as congruence distributivity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.