Abstract

We investigate the families of periodic and nonperiodic behaviors admitted by a hysteresis-based circuit oscillator. The analysis is carried out by combining brute-force simulations with continuation methods. As a result of the analysis, it is shown that the existence of many different periodic solutions and of the chaotic behaviors associated with them is organized by few codimension-2 bifurcation points. This implies the possibility of switching between different periodic solutions by controlling only two bifurcation parameters, which makes the oscillator a possible generator of nontrivial periodic solutions suitable, for instance for actual radiofrequency identification systems applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.