Abstract
We study the problem of binary classification from the point of view of learning convex polyhedra in Hilbert spaces, to which one can reduce any binary classification problem. The problem of learning convex polyhedra in finite-dimensional spaces is sufficiently well studied in the literature. We generalize this problem to that in a Hilbert space and propose an algorithm for learning a polyhedron which correctly classifies at least 1 − ε of the distribution, with a probability of at least 1 − δ, where ε and δ are given parameters. Also, as a corollary, we improve some previous bounds for polyhedral classification in finite-dimensional spaces.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the AAAI Conference on Artificial Intelligence
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.