Abstract

Nonassociative Lambek Calculus (NL) is a syntactic calculus of types introduced by Lambek [8]. The polynomial time decidability of NL was established by de Groote and Lamarche [4]. Buszkowski [3] showed that systems of NL with finitely many assumptions are decidable in polynomial time and generate context-free languages; actually the P-TIME complexity is established for the consequence relation of NL. Adapting the method of Buszkowski [3] we prove an analogous result for Nonassociative Lambek Calculus with unit (NL1). Moreover, we show that any Lambek grammar based on NL1 (with assumptions) can be transformed into an equivalent context-free grammar in polynomial time.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.