Abstract

Bender et al. (SPAA 2013) proposed a theoretical framework for testing in contexts where safety mistakes must be avoided. Testing in such a context is made by machines that need to be often calibrated. Since calibrations have non negligible cost, it is important to study policies minimizing the calibration cost while performing all the necessary tests. We focus on the single-machine setting and we study the complexity status of different variants of the problem. First, we extend the model by considering that the jobs have arbitrary processing times and that the preemption of jobs is allowed. For this case, we propose an optimal polynomial time algorithm. Then, we study the case where there is many types of calibrations with different lengths and costs. We prove that the problem becomes NP-hard for arbitrary processing times even when the preemption of the jobs is allowed. Finally, we focus on the case of unit-time jobs and we show that a more general problem, where the recalibration of the machine is not instantaneous, can be solved in polynomial time.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.