Abstract

Potential functions are a general class of heuristics for classical planning. For satisficing planning, previous work suggested the use of descending and dead-end avoiding (DDA) potential heuristics, which solve planning tasks by backtrack-free search. In this work we study the complexity of devising DDA potential heuristics for classical planning tasks. We show that verifying or synthesizing DDA potential heuristics is PSPACE-complete, but suitable modifications of the DDA properties reduce the complexity of these problems to the first and second level of the polynomial hierarchy. We also discuss the implications of our results for other forms of heuristic synthesis in classical planning.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.