Abstract
The sun is the graph obtained from a cycle of length even and at least six by adding edges to make the even-indexed vertices pairwise adjacent. Suns play an important role in the study of strongly chordal graphs. A graph is chordal if it does not contain an induced cycle of length at least four. A graph is strongly chordal if it is chordal and every even cycle has a chord joining vertices whose distance on the cycle is odd. Farber proved that a graph is strongly chordal if and only if it is chordal and contains no induced suns. There are well known polynomial-time algorithms for recognizing a sun in a chordal graph. Recently, polynomial-time algorithms for finding a sun for a larger class of graphs, the so-called HHD-free graphs (graphs containing no house, hole, or domino), have been discovered. In this paper, we prove the problem of deciding whether an arbitrary graph contains a sun is NP-complete.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.