Abstract

AbstractIf A(z) belongs to the Bergman space , then the differential equation f″+A(z)f=0 is Blaschke-oscillatory, meaning that the zero sequence of every nontrivial solution satisfies the Blaschke condition. Conversely, if A(z) is analytic in the unit disc such that the differential equation is Blaschke-oscillatory, then A(z) almost belongs to . It is demonstrated that certain “nice” Blaschke sequences can be zero sequences of solutions in both cases when A ∈ or A ∉ . In addition, no condition regarding only the number of zeros of solutions is sufficient to guarantee that A ∈ .

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.