Abstract

We study two approaches to replace a finite mathematical programming problem with inequality constraints by a problem that contains only equality constraints. The first approach lifts the feasible set into a high-dimensional space by the introduction of quadratic slack variables. We show that then not only the number of critical points but also the topological complexity of the feasible set grow exponentially. On the other hand, the second approach bases on an interior point technique and lifts an approximation of the feasible set into a space with only one additional dimension. Here only Karush–Kuhn–Tucker points with respect to the positive and negative objective function in the original problem give rise to critical points of the smoothed problem, so that the number of critical points as well as the topological complexity can at most double.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.