Abstract
We give a uniform method for the two problems of counting the connected and irreducible components of complex algebraic varieties. Our algorithms are purely algebraic, i.e., they use only the field structure of C . They work in parallel polynomial time, i.e., they can be implemented by algebraic circuits of polynomial depth. The design of our algorithms relies on the concept of algebraic differential forms. A further important building block is an algorithm of Szántó computing a variant of characteristic sets. Furthermore, we use these methods to obtain a parallel polynomial time algorithm for computing the Hilbert polynomial of a projective variety which is arithmetically Cohen–Macaulay.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.