Abstract
Modern processors use cache memory, a memory access that “hits” the cache returns early, while a “miss” takes more time. Given a memory access in a program, cache analysis consists in deciding whether this access is always a hit, always a miss, or is a hit or a miss depending on execution. Such an analysis is of high importance for bounding the worst-case execution time of safety-critical real-time programs. There exist multiple possible policies for evicting old data from the cache when new data are brought in, and different policies, though apparently similar in goals and performance, may be very different from the analysis point of view. In this article, we explore these differences from a complexity-theoretical point of view. Specifically, we show that, among the common replacement policies, Least Recently Used is the only one whose analysis is NP-complete, whereas the analysis problems for the other policies are PSPACE-complete.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.