Abstract
Accreting black holes show a complex and diverse behaviour in their soft spectral states. Although these spectra are dominated by a soft, thermal component which almost certainly arises from an accretion disc, there is also a hard X-ray tail indicating that some fraction of the accretion power is instead dissipated in hot, optically thin coronal material. During such states, best observed in the early outburst of soft X-ray transients, the ratio of power dissipated in the hot corona to that in the disc can vary from ∼ 0 (pure disc accretion) to ∼ 1 (equal power in each). Here we present results of spectral analyses of a number of sources, demonstrating the presence of complex features in their energy spectra. Our main findings are: (1) the soft components are not properly described by a thermal emission from accretion discs: they are appreciably broader than can be described by disc blackbody models even including relativistic effects, and (2) the spectral features near commonly seen in such spectra can be well described by reprocessing of hard X-rays by optically thick, highly ionized, relativistically moving plasma.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.