Abstract

A rather strong concept of symmetry is introduced in classical mechanics, in the sense that some mechanical systems can be completely characterized by the symmetry laws they obey. Accordingly, a ‘‘complete symmetry group’’ realization in mechanics must be endowed with the following two features: (1) the group acts freely and transitively on the manifold of all allowed motions of the system; (2) the given equations of motion are the only ordinary differential equations that remain invariant under the specified action of the group. This program is applied successfully to the classical Kepler problem, since the complete symmetry group for this particular system is here obtained. The importance of this result for the quantum kinematic theory of the Kepler system is emphasized.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.