Abstract

The interaction of dislocations with phase boundaries is a complex phenomenon, that is far from being fully understood. A two-dimensional Peierls-Nabarro finite element (PN-FE) model for studying edge dislocation transmission across fully coherent and non-damaging phase boundaries was recently proposed. This paper brings a new dimension to the complexity by extending the PN-FE model with a dedicated cohesive zone model for the phase boundary. With the proposed model, a natural interplay between dislocations, external boundaries and the phase boundary, including decohesion of that boundary, is provided. It allows one to study the competition between dislocation transmission and phase boundary decohesion. Commonly, the interface potentials required for glide plane behaviour and phase boundary decohesion are established through atomistic simulations. They are corresponding to the misfit energy intrinsic to a system of two bulks of atoms that are translated rigidly with respect to each other. It is shown that the blind utilisation of these potentials in zero-thickness interfaces (as used in the proposed model) may lead to a large quantitative error. Accordingly, for physical consistency, the potentials need to be reduced towards zero-thickness potentials. In this paper a linear elastic reduction is adopted. With the reduced potentials for the glide plane and the phase boundary, the competition between dislocation transmission and phase boundary decohesion is studied for an 8-dislocation pile-up system. Results reveal a strong influence of the phase contrast in material properties as well as the phase boundary toughness on the outcome of this competition. In the case of crack nucleation, the crack length shows an equally strong dependency on these properties.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call