Abstract

The linear stability of a fluid confined between two coaxial cylinders rotating independently and with axial sliding (spiral Couette flow) is examined. A wide range of experimental parameters has been explored, including two different radius ratios. Zeroth-order discontinuities are found in the critical surface; they are explained as a result of the competition between the centrifugal and shear instability mechanisms, which appears only in the co-rotating case, close to the rigid-body rotation region. In the counter-rotating case, the centrifugal instability is dominant. Due to the competition, the neutral stability curves develop islands of instability, which considerably lower the instability threshold. Specific and robust numerical methods to handle these geometrical complexities are developed. The results are in very good agreement with the experimental data available, and with previous computations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.