Abstract
Two different approaches for compensating the probe positioning errors in a near-field-far-field transformation with cylindrical scanning using a nonredundant number of measurements are presented and experimentally validated in this paper. In order to evaluate the uniformly distributed samples from the irregularly spaced ones, the former makes use of the singular value decomposition method, whereas the latter employs an iterative technique. In both the cases, the near-field data needed by a standard near-field-far- field transformation are efficiently evaluated via an optimal sampling interpolation algorithm.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.