Abstract

Two different approaches for compensating the probe positioning errors in a near-field-far-field transformation with cylindrical scanning using a nonredundant number of measurements are presented and experimentally validated in this paper. In order to evaluate the uniformly distributed samples from the irregularly spaced ones, the former makes use of the singular value decomposition method, whereas the latter employs an iterative technique. In both the cases, the near-field data needed by a standard near-field-far- field transformation are efficiently evaluated via an optimal sampling interpolation algorithm.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call