Abstract
The estimation of the mean of an univariate normal population with unknown variance is considered when uncertain non-sample prior information is available. Alternative estimators are denned to incorporate both the sample as well as the non-sample information in the estimation process. Some of the important statistical properties of the restricted, preliminary test, and shrinkage estimators are investigated. The performances of the estimators are compared based on the criteria of unbiasedness and mean square error in order to search for a ‘best’ estimator. Both analytical and graphical methods are explored. There is no superior estimator that uniformly dominates the others. However, if the non-sample information regarding the value of the mean is close to its true value, the shrinkage estimator over performs the rest of the estimators.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.