Abstract

ABSTRACT This study was designed to compare the computing efficiency of C-TNADSP and the BNADSP to ascertain a more efficient numerical algorithm necessary for the processing of digital signals. The faster numerical algorithm established in this study is abbreviated with RCC-TNADSP (Resultant Compared C-TBNADSP). The methodology adopted in this work was comparative analysis development design. The major technologies used in this work are the C-TNADSP and BNADSP, and the c++. The c++ served as a signal processing language simulator (SPLS). The execution times of the Cooley-Tukey and the Bluestein algorithms were 3.44 seconds and 3.50 seconds respectively. On comparing the speeds of the fast Cooley–Tukey and the fast Bluestein algorithms we observed that the Cooley-Tukey algorithm has 0.06 seconds speed improvement over the Bluestein algorithm. In line with this outcome, we concluded that the Cooley-Tukey algorithm (C-TNADSP) is faster than the Bluestein algorithm (BNADSP). In the same vein the Cooley-Tukey algorithm (C-TNADSP) is therefore the fastest DSP algorithm. This is however faster than the spectrum of FFT algorithms of O(nlogn) computing speed. The algorithms were tested on input block width 1000 units, and above, and can be implemented on input size of 100 000, and 1000 000 000 without the challenge of storage overflow. The input samples tested in this work was the discretized pulse wave form with undulating shape out of which the binary equivalents were extracted. Other forms of signals may also be tested in this fast algorithm provided they are interpreted in the digital wave type. KEYWORDS: Algorithm, FFT, Cooley-Tukey, Bluestein, Comparison, Analysis, FFT

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.